

Wildfire Smoke Contamination Testing


Eugenia Mirica., Ph.D. Laboratory Manager

Wildfire

Uncontrolled fire in an area of vegetation brush fire, bushfire, forest fire, desert fire, grass fire, hill fire, peat fire, vegetation fire

Particulate components of the wildfire debris:

Why testing?

Insurance Claims

Assessment of Contamination

Cleaning and Restoration

Current methods

AIHA Technical Guide for Wildfire Impact Investigations for the OEHS Professional (2018)

ASTM D 6602-13: Standard Practice for Sampling and Testing of Possible Carbon Black Fugitive Emissions or Other Environmental Particulate, or Both (analytical methods)

Scope of Testing (Analytical)

Target:

Analysis of wildfire residues for presence of analytes of interest produced in a combustion event:

- char
- ash
- black carbon/soot

<u>Result:</u>

Information related to the extent of damage produced by the fire

Analytical results can be used for damage assessment, cleaning planning, and insurance claims

Definition of Analytes

Char

Material obtained by carbonization (chemical process of transformation of an organic substance by means of pyrolysis in a residue with carbon as the main elemental component)

char =particles larger than 1µm and may preserve the original cellular morphology of the material that was combusted. These particles can range up to several millimeter in size

(definition form ASTM D6602-13)

Definition of Analytes

Ash

Material obtained by carbonization The main differences between ash and char:

Ash may not preserve any of the original morphology of the precursor

It may have a higher concentration of inorganic components due to the complete consumption of some of the organic matrix.

Sampling Options

Air Sampling

NIOSH 5000: Carbon Black

Filter: (tared 5-µm PVC membrane) Flow Rate : 1 to 2 L/min VOL -MIN: 30 L @ 3.5 mg/m3 -MAX: 570 L

Alternative: NIOSH 0500/0600 Main difference: TEM analysis to ascertain presence of soot

Sampling Options

Air Sampling

Cassette: 0.45- to 1.2-µm MCE membrane, 25-mm Flow Rate : 0.5 to 16 L/min VOL -MIN: 400 L @ 0.1 particles/cc -MAX: 1500-1800 L (NIOSH 7400 sampling suggested)

Full ID for char and ash Presumptive ID for soot; applicable for aggregates larger than 300 nm

Sampling Options Air Sampling

Air-O-Cell

 Flow Rate : 15L/Min

 VOL
 -MIN: 15 L

 -MAX: 75 L

Full ID for char and ash

Presumptive ID for soot; applicable for aggregates larger than 300 nm

Sampling Options

Surface Sampling

Micro-vacuum

Tape Lift

Wipes

Sampling Options Micro-vacuuming

Advantages	Disadvantages
- Efficient sampling method for collecting particles	- Poor efficiency for collecting particles from relatively smooth
from porous and uneven surfaces with medium and	non-porous surfaces with low loading;
heavy loading;	
	- It does not preserve the relative positions of the particles on the
- The samples represent bulk amount of particle	original surface and the population per unit area*;
material, often of many different sizes;	original surface and the population per ante area ;
material, often of many unrefent sizes,	- Can induce damage to brittle particles such as char and ash**;
A susting of a stinglaw data strong with some strong the de	
- A variety of optical and electron microscopy methods	
can be used in the identification analysis;	
- The TEM confirmatory identification of aciniform	
soot, as indicated in ASTM D6602-13, can be applied	
using the drop-mount technique;	
- Chemical analysis of organic compounds associated	
with the fire deposits through bulk spectroscopy	
and/or chromatography (such as PAH's) can be	
applied;	*this is a limitation when the agglomerate size and the distribution over
	the collection surface is of interest
- Corrosivity analysis via pH measurement or anions	**if proper sampling and sample preparation procedures are applied, the
scan by Ion Chromatography can be applied;	damage can be greatly minimized
	A

Sampling Options Tape Lifting

Auvallages
- Efficient sampling method for collecting particles
from relatively smooth non-porous surfaces with
typical monolayer loading;

- It preserves the relative positions of the particles on the original surface and the population per unit area;

- A variety of optical microscopy methods can be used in the identification analysis, with minimal preparation;

- SEM/EDX methodology can be applied for comprehensive characterization of char and ash and presumptive identification of soot clusters.

Disadvantages

- Poor efficiency for collecting on porous, uneven or heavily loaded surfaces, showing preferential sampling from the top layer particles;

- Application of overpressure during sampling can obscure or damage the brittle particles of char and ash;

- Limited sampling area;

- Particles part of large agglomerations many not be correctly identified by applicable methods due to overlapping

- The TEM confirmatory identification of aciniform soot cannot be applied;

- Chemical analysis of organic compounds associated with the fire debris through spectroscopy and/or chromatography (such as PAH's) cannot be applied;

- Corrosivity analysis via pH measurement or anions scan by Ion Chromatography cannot be applied.

Adams

Sampling Options Wet Wiping

- A variety of optical and electron microscopy methods can be used in the identification analysis;

- The TEM confirmatory identification of aciniform soot, as indicated in ASTM D6602-13 can be applied using the drop-mount technique;

- Particle dispersion techniques for breaking up the agglomerates may enable more accurate identification of individual grains, necessary when environmental interferences are suspected;

- Chemical analysis of organic compounds associated with the fire deposits through bulk spectroscopy and/or chromatography (such as PAH's) can be applied;

- Corrosivity analysis via pH measurement or anions scan by Ion Chromatography can be applied;

Disadvantages

- Poor efficiency for collecting on porous and uneven surfaces;

- It does not preserve the relative positions of the particles on the original surface and the population per unit area*;

- Can induce damage to brittle particles such as char and ash;

- There can be variance in what particles are successfully transferred from the wipe and therefore isolated for analysis.

*this is a limitation when the agglomerate size and the distribution over the collection surface is of interest

Advantage

Sampling Options Surface Sampling/Recommended Surfaces

Microvac: Main living areas Interior door frame Corner of floors Door tracks Attic Areas

Wet Wipe:

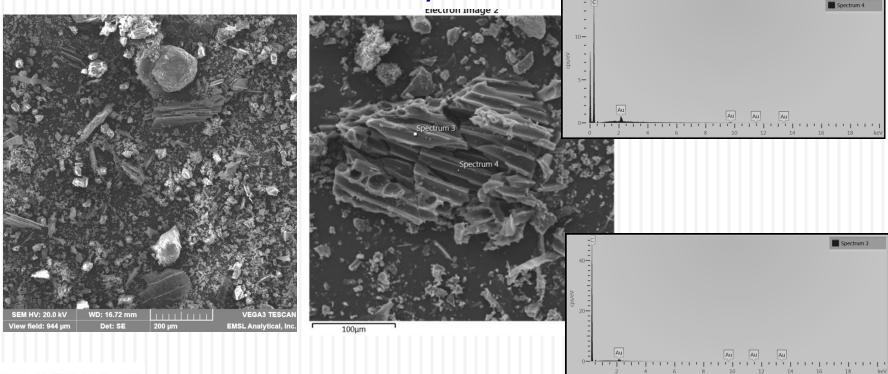
TV's Computer displays Plastic surfaces Furniture Windows Refrigerators **Tape Lift:** Main living areas Interior door frame Corner of floors Door tracks Attic Areas

AVOID PAINTED SURFACES

Choose sampling method based on surface and scope

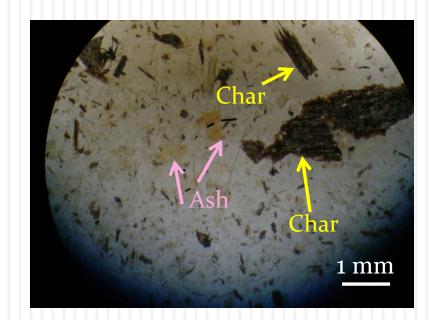
Methods of Analysis Instrumentation

Light Microscopy


(Primary Method for Char and Ash; Secondary method for soot)

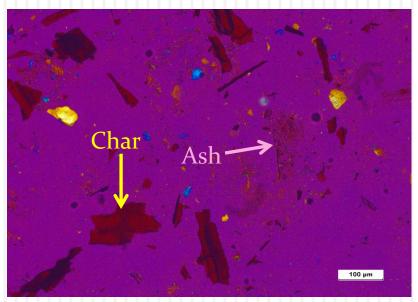
Scanning Electron Microscopy (SEM/EDX) (Secondary Method for Char, Ash, and soot)

Transmission Electron Microscopy (TEM/EDX) (Primary Method for soot)


Scanning Electron Microscopy Energy Dispersive X-Rays SEM/EDX

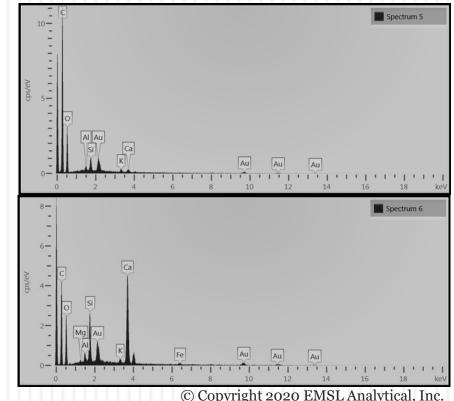
EMSL ANALYTICAL, INC.

Light Microscopy


Reflected Light Microscopy (RLM) Reflected light microscopy is primarily used to examine opaque particles:

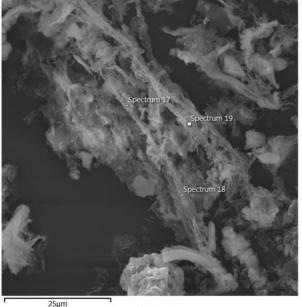
metals, coal/coke, wood, slag, rock, plastics, alloys, composites, char

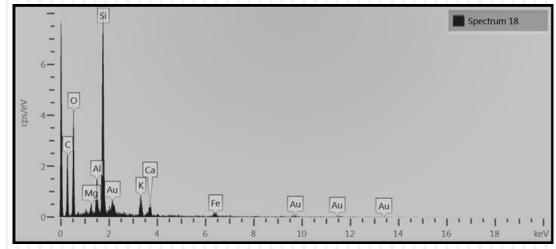
Light Microscopy


Polarized Light Microscopy (PLM)

Morphology, sign of elongation, birefringence, pleochroism, angle of extinction, and refractive index normally determined

Scanning Electron Microscopy Energy Dispersive X-Rays SEM/EDX




20

Scanning Electron Microscopy Energy Dispersive X-Rays SEM/EDX

LIECTION MILAGE /

Wood ash

Determining Concentrations

Air Sample (NIOSH 5000)

Gravimetric:

Concentration, C (mg/m₃) in the air volume sampled, V (L):

$$C = \frac{(W_2 - W_1) - (B_2 - B_1)}{V} \cdot 10^3, mg/m^3.$$

where:

W1 = tare weight of filter before sampling (mg)
W2 = post-sampling weight of sample-containing filter (mg)
B1 = tare weight of blank filter (mg)
B2 = post-sampling weight of blank filter (mg)

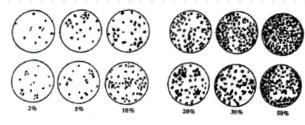
INTERFERENCES: The presence of any other particulate material in the air being sampled will be a positive interference since this is a gravimetric method.

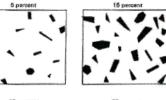
Determining Concentrations

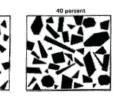
Air Sample (Particle Count)

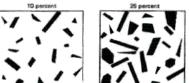
Similar to NIOSH 7400 procedure (using PLM)

C= [# Particles/Field Area]*[Effective Filter Area/Volume]


Results expressed in #particles/volume of air


It does not take into consideration the particle size




Determining Concentrations

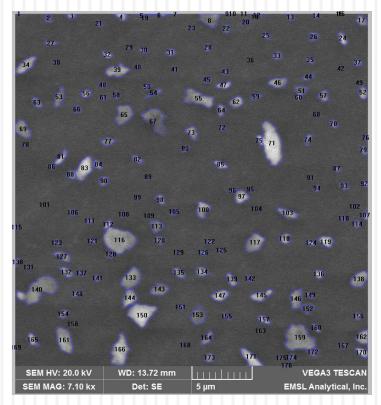
Bulk Sample /Visual Area Estimation (EPA 600/R-93/116)

Comparison chart for visual area estimation (after Terry and Chilingar, 1955)

Wildfire

Example of protocol for sampling:

Farmers Group of Companies: "Wildfire claims of damage from soot, char and ash; Protocol for Environmental Sampling of Residential Structures for Particulate Counts and Corrosivity by Certified Hygienist"


2-4 locations (2 samples/location)

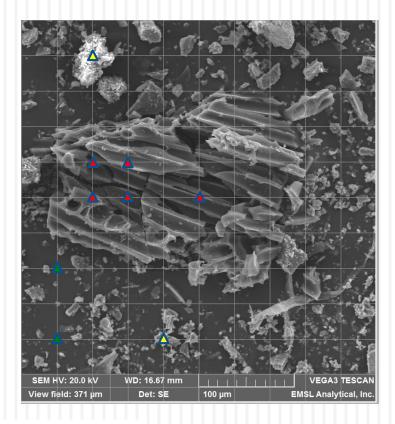
Examples of locations

- Kitchen area (e.g. from an interior corner of a kitchen countertop or from rear of the countertop)
- Main living area, like family rooms, dining rooms and bathrooms (e.g. from top of interior door frame or window frame in room with main entrance to structure or room closest to main entrance of structure or from corners of floors)
- Bedrooms (e.g. from rear of a furniture top)
- Points of entry include window ledges, door sills, door tracks, etc.

Determining Concentrations Surface Sampling/ Particle Count

Results expressed as:

of particles per surface area


% derived from particle count

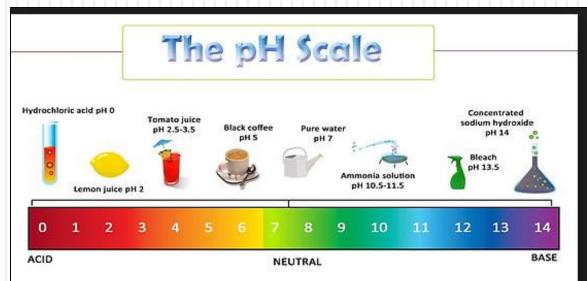
It does not take into consideration the particle size.

% char= [#char particles/#total particles]*100

Determining Concentrations Surface Sampling/ Point Count

EPA 600/R-93/116

Results expressed as:


% derived from point particle count

It <u>does</u> take into consideration the particle size

% char= [#char points/#total particle points]*100

Corrosivity of the wildfire debris

ASTM D4972-13: Standard method for pH of soils EPA SW-846-Test method 9045D: Soil and waste pH <u>Alternative</u>: Anions/Ion Chromatography

Emissions

1993 EPA Report

<u>A Summary of the Emissions Characterization</u> <u>and Noncancer Respiratory Effects of Wood</u> <u>Smoke</u>, EPA-453/R-93-036

(see next page for results)

Emissions

Table 2. Chemical Composition of Wood Smoke

Species ¹	g/kg wood ²	Physical State ³	Reference
Carbon Monoxide	80-370	v	4,5
Methane	14-25	v	5
VOCs (C ₂ -C ₇)	7-27	v	5
Aldehydes	0.6-5.4	v	4,6
Formaldehyde	0.1-0.7	v	4,6
Acrolein	0.02-0.1	v	6
Propionaldehyde	0.1-0.3	v	4,6
Butryaldehyde	0.01-1.7	v .	4,6
Acetaldehyde	0.03-0.6	v	4,6
Furfural	0.2-1.6	v	7,8
Substituted Furans	0.15-1.7	v	7,8
Benzene	0.6-4.0	v	5
Alkyl Benzenes	1-6	v	9
Toluene	0.15-1.0	v	9
Acetic Acid	1.8-2.4	v	7
Formic Acid	0.06-0.08	v	7
Nitrogen Oxides (NO,NO ₂)	0.2-0.9	v	4,5
Sulfur Dioxide	0.16-0.24	v	4
Methyl chloride	0.01-0.04		10
Napthalene	0.24-1.6	v	9
Substituted Napthalenes	0.3-2.1	V/P	. 9
Oxygenated Monoaromatics	1 - 7	V/P	9
Guaiacol (and derivatives)	0.4-1.6	V/P	11
Phenol (and derivatives)	0.2-0.8	V/P	11
Syringol (and derivatives)	0.7-2.7	V/P	11
Catechol (and derivatives)	0.2-0.8	V/P	11
Total Particle Mass	7-30	P	5
Particulate Organic Carbon	2-20	P	12
Oxygenated PAHs	0.15-1	V/P	9
PAHs			
Fluorene	4x10-5 - 1.7x10-2	V/P	13
Phenanthrene	2x10 ⁻⁵ - 3.4x10 ⁻²	V/P	13
Anthracene	5x10-5 - 2.1x10-2	V/P	13

Species ¹	g/kg wood ²	Physical State ³	Reference
Methylanthracenes	7x10 ⁻⁵ - 8x10 ⁻³	V/P	13
Fluoranthene	7x10 ⁻⁴ - 4.2x10 ⁻²	V/P	13
Pyrene	8x10 ⁻⁴ - 3.1x10 ⁻²	V/P	13
Benzo(a)anthracene	4x10 ⁻⁴ - 2x10 ⁻³	V/P	13
Chrysene	5x10 ⁻⁴ - 1x10 ⁻²	V/P	13
Benzofluoranthenes	6x10 ⁻⁴ - 5x10 ⁻³	V/P	13
Benzo(e)pyrene	2x10 ⁻⁴ - 4x10 ⁻³	V/P	13
Benzo(a)pyrene	3x10 ⁻⁴ - 5x10 ⁻³	V/P	13
Perylene	5x10 ⁻⁵ - 3x10 ⁻³	V/P	13
Ideno(1,2,3-cd)pyrene	2x10 ⁻⁴ - 1.3x10 ⁻²	V/P	13
Benz(ghi)perylene	3x10 ⁻⁵ - 1.1x10 ⁻²	V/P	13
Coronene	8x10 ⁻⁴ - 3x10 ⁻³	V/P	13
Dibenzo(a,h)pyrene	3x10 ⁻⁴ - 1x10 ⁻³	V/P	13
Retene	7x10 ⁻³ - 3x10 ⁻²	V/P	14
Dibenz(a,h)anthracene	2x10-5 - 2x10-3	V/P	13
race Elements			
Na	3x10-3 - 1.8x10-2	P	15
Mg	2x10-4 - 3x10-3	P	15
Al	1x10 ⁻⁴ - 2.4x10 ⁻²	Р	15
Si	3x10 ⁻⁴ - 3.1x10 ⁻²	P	15
S	1x10-3 - 2.9x10-2	P	15
Cl	7x10-4 - 2.1x10-1	Р	15
ĸ	3x10 ⁻³ - 8.6x10 ⁻²	P	15
Ca	9x10-4 - 1.8x10-2	Р	15
Ti	4x10 ⁻⁵ - 3x10 ⁻³	P	15
v	2x10 ⁻⁵ - 4x10 ⁻³	P	15
Cr	2x10 ⁻⁵ - 3x10 ⁻³	Р	15
Mn	7x10 ⁻⁵ - 4x10 ⁻³	Р	15
Fe	3x10 ⁻⁴ - 5x10 ⁻³	P	15
Ni	1x10 ⁻⁶ - 1x10 ⁻³	P	15
Cu	2x10-4 - 9x10-4	P	15
Zn	7x10 ⁻⁴ - 8x10 ⁻³	P	15
Br	7x10-5 - 9x10-4	P	15
		Р	

g/kg wood ²	Physical State ³	Reference
0.3 - 5	Р	16
1x10 ⁻³ - 6x10 ⁻³	Р	17
0.01 - 0.05	P	18
0.02 - 0.10	P	18
2x10 ⁻³ - 8x10 ⁻³	P	18
4x10 ⁻⁶ - 2x10 ⁻⁵	P	18
1x10 ⁻⁵ - 4x10 ⁻⁵	Р	19
7x10 ⁻³ - 7x10 ⁻²	Р	20
	$\begin{array}{c} 0.3 - 5 \\ 1x10^{-3} - 6x10^{-3} \\ 0.01 - 0.05 \\ 0.02 - 0.10 \\ 2x10^{-3} - 8x10^{-3} \\ 4x10^{-6} - 2x10^{-5} \\ 1x10^{-5} - 4x10^{-5} \end{array}$	$\begin{array}{c c} 0.3-5 & P \\ \hline 0.3-5 & P \\ \hline 1x10^3-6x10^3 & P \\ \hline 0.01-0.05 & P \\ 0.02-0.10 & P \\ 2x10^3-8x10^3 & P \\ 4x10^6-2x10^5 & P \\ \hline 1x10^5-4x10^5 & P \end{array}$

1 Some species are group	uped into general classes as indicated by italics
² To estimate the weigh combustion air per kg	ht percentage in the exhaust, divide the g/kg value by 80. This assumes that there are 7.3 kg of wood. Major species not listed here include carbon dioxide and water vapor (about 12 and
7 weight percent respect	ctively under the assumed conditions).
	s; V = vapor, P = particulate, and V/P = vapor and/or particulate (i.e., semi-volatile).
⁴ DeAngelis (1980)	
⁵ OMNI (1988)	
6Lipari (1984), values	for fireplaces
methyl_?furaldehyde	to independent of the substituted furans include 2-furanmethanol, 2 acetylfuran, 5- and benzofuran
8 Value estimated for r	sine from Edve et al (1991) from reported yield relative to guaiacol, from guaiacol values of
Handhome (1080) and	assuming particulate organic carbon is 50% of total particle mass
⁹ Steiber et al (1992), 10 Khalil (1983)	values computed assuming a range of 3-20 g of total extractable, speciated mass per kg wood
11 Hawthorne (1989).	values for syringol for hardwood fuel; see also Hawthorne (1988)
12 Core (1989) De Ane	relis (1980), Kalman and Larson (1987)
¹³ From one or more of (1986), Core (1989), K when values were reported.	for the following studies: Cooke (1981), Truesdale (1984), Alfbeim et al (1984), Zeedijk Calman and Larson (1987); assuming a range of 7 to 30 grams of particulate mass per kg woo rited in grams per gram of particulate mass. Similar assumptions apply to references 14,15 an
references 17-19	17
14 Core (1989), Kalma	
¹⁵ Watson (1979), Con	re (1989), Kalman and Larson (1987)
16 Rau (1989), Core (1	(989)
17 Core (1989)	the local metric sector and transmission and values
¹⁸ Standley and Simon	neit (1990); Dehydroabietic acid values for pine smoke, lupenone and isopimaric acid values
for alder smoke, and fi	riedelin values for oak soot.
and OCDDS	arski (1982), from particulate condensed on flue pipes; includes TCDDs, HCDDs, H7CDDs
20 p	and a side and any instant of acid peeded to reach a pH of 5.6 in extract solution

²⁰ Burnet et al (1986); one gram of acid = one equivalent of acid needed to reach a pH of 5.6 in extract solution

Metals Analysis/Trace Elements

Na	Si	K	V	Fe	Zn
Mg	S	Ca	Cr	Ni	Br
Al	Cl	Ti	Mn	Cu	Pb

Add As, Hg, Cd for heavy metals panel

Semi-Volatiles Compounds (GC-MS)

VOC's (C2-C7)	PAH's
Aldehydes	Alkanes (C24-C30)
Dioxin and Furans	Terpenoids

Data Interpretation

- No recognized numerical values or generally accepted consensus regarding the concentrations associated with contamination or damage
- Damage= alteration resulting in impairment or loss of function, appearance, utility or value

Presence/Absence- radical approach

Particle count: OSHA 1910.1000 Table Z-3: Inert/Nuisance Dust: 15 mmpcf = 5 mg/m3 Conversion factors - mppcf × 35.3 = million particles per cubic meter = particles per c.c.

VAE method: LOQ = 1%

Health Effects

Components of wildfire smoke:

- -Heavy metals
- -PAH's
- -Dioxin
- -Furans

Many of these components are regulated as carcinogens -Upper respiratory system irritations -Inflammatory responses -Asthma triggers -Changes in lung functions -Immune system suppression

Cleaning/Remediation

Goal: return the property to a pre-fire condition

Cleaning of surfaces: Dry sponge Damp wiping Vacuuming with HEPA

Ventilation the building by opening windows, installing fans

Verify cleaning with spot sampling

Thank You!

Contact:

Eugenia Mirica, Ph.D.

emirica@emsl.com

EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077

Phone: 856-303-2544, Toll Free: 800-220-3675

