Emerging Issues: NIOSH Update

John Piacentino, MD, MPH
Associate Director for Science, NIOSH

California Industrial Hygiene Council: Professional Development Seminar
December 5, 2019

Mark Hopkins Hotel
San Francisco, California
Acknowledgements

Contribution of content and slides for this presentation

- Miriam Calkins
- Chris Coffey
- MaryAnn Garrahan
- Elizabeth Masterson
- TJ Lentz
- William Murphy
- Paul Schulte
- Lauralynn Taylor McKernan
- Elizabeth Whelan
Presentation Outline

About NIOSH and its Partnerships
Disease Detective Case Study 1
Confusing Chemicals
Occupational Exposure Banding
Disease Detective Case Study 2
About NIOSH and its Partnerships
NIOSH Mandate

NIOSH has the mandate to assure “every man and woman in the Nation safe and healthful working conditions and to preserve our human resources.”

Occupational Safety and Health Act of 1970
US Workforce Statistics

Around 160 million workers in the United States\(^1\)

$250 billion in medical costs and productivity losses\(^2\)

1. BLS 2017
2. Leigh 2011
The NIOSH mission is to develop new knowledge in the field of occupational safety and health, and to transfer that knowledge into practice.
NIOSH Work is Inherently Collaborative

Government, Industry, Labor, Professional Societies, Academia, Others

Why?

- Broad mission
- Large, diverse and geographically dispersed workforce
- Changing economic conditions
- Evolving technology and science
- Inherent challenge of moving science into practice
Why engage in partnership?

- Solve complex problems
- Accelerate discovery or innovation
- Facilitate knowledge translation or diffusion
- Optimize resource management
- Create value
NIOSH Partnership with AIHA

- NIOSH and AIHA have had a partnership agreement for almost 15 years
- Periodic identification of mutual areas of interest
- Examples of partnership activities
 - Webinars on nanomaterials
 - Enhancing the NIOSH Pocket Guide
 - Developing an App for IH Calculations
 - Integrating Safety Matters into school curricula
 - Identifying worksites for NIOSH projects
- Contact the AIHA board liaison from your local section or committee
Disease Detective

Case Study
Disease Detective – Chronic cough and shortness of breath

- A 38 year old male visits his primary care physician because of a chronic cough and shortness of breath when climbing stairs.
- His symptoms began two years ago and are getting progressively worse.
What could be causing these symptoms?

- Asthma
- Cancer
- Chemical or toxin
- Chronic obstructive pulmonary disease
- Infection
- Immune disorder
- Medication
What additional history would be helpful?

- He was previously in good health
- Has no medical conditions
- Does not smoke
- Occasionally takes acetaminophen for shoulder pain
Chest X-ray and CT Scan Results

Chest x-ray shows large round opacities
CT scan shows ground glass appearance
What about an occupational history?

- He works as a subcontractor for a kitchen remodeling company
- He started with his present employer 18 months ago
- He has done similar work for the past 10 years
- His job tasks include installing cabinetry and counter tops
- He wears personal protective equipment intermittently
Disease Detective – Key Questions

- What is the likely occupational hazard?
- What is the source?
- What job tasks are associated with exposure?
- How do you protect workers?
Crystalline silica

- Exposure to respirable crystalline silica is associated with silicosis, lung cancer, pulmonary tuberculosis, and airways diseases.
- Exposures may also be related to autoimmune disorders, chronic renal disease and other adverse health effects.
Industries and occupations associated with silica exposure

- Construction
- Countertop manufacturing, finishing and installation
- Dentistry
- Hydraulic fracturing
- Mining
- Sandblasting
Work operations leading to exposure to crystalline silica dust

- Operating powered hand tools for cutting, grinding, edging and contouring
- Opening bags of ground quartz
- Moving or mixing bulk raw materials
- Cleaning and scraping mixers
- Cleaning dust collector bag houses

OSHA/NIOSH [2015]
Controlling exposure to silica dust

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elimination</td>
<td>Different countertop materials</td>
</tr>
<tr>
<td>Substitution</td>
<td>Less toxic formulation</td>
</tr>
<tr>
<td>Engineering</td>
<td>Water spray systems, hand tools with a shroud, local exhaust ventilation</td>
</tr>
<tr>
<td>Administrative</td>
<td>Wet sweeping, prewash stone slabs, regular housekeeping for water slurry and settled dust, training, medical monitoring</td>
</tr>
<tr>
<td>PPE</td>
<td>Respirators</td>
</tr>
</tbody>
</table>

OSHA/NIOSH [2015]
Federal OSHA and State Plan Silica Standards

Requires employers to limit worker exposures to respirable crystalline silica and to take other steps to protect workers.

<table>
<thead>
<tr>
<th>Federal OSHA</th>
<th>Cal OSHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction, 1926.1153 – Respirable crystalline silica</td>
<td>Construction, § 1532.3. Occupational Exposures to Respirable Crystalline Silica</td>
</tr>
</tbody>
</table>
Severe silicosis in engineered stone fabrication workers, MMWR, 2019

- Respirable crystalline silica exposure causes silicosis
- Cases have been previously reported internationally
- In 2019, 18 cases of silicosis, including 2 deaths, were reported in CA, CO, TX and WA.
- Several workers also had latent tuberculosis and autoimmune disease
- Stone fabrication workers, especially those working with engineered stone are at risk for silicosis
- Reducing exposure, complying with standards and conducting medical screening can protect workers

MMWR 2019
Silicosis in Stone Fabrication Workers

Silicosis

- Incurable lung disease
- Occurs after breathing silica dust

Workers are at risk

- 18 cases in 4 states
- 2 deaths

Most worked with engineered stone

How to protect workers

- Control and monitor exposures
- Comply with standards
- Conduct medical screening

Cases identified in CA, CO, WA, and TX through surveillance and case reports as published in Rose, Heinzerling, et al. MMWR 2019. bit.ly/CDCVA31
Silica Safety Resources for Stone Fabricators

Silicosis Outbreak from Stone Countertop Fabrication Work

Two California workers died in 2015 at the ages of 30 and 36 from severe silicosis, both had jobs at a stone countertop fabrication company, working on engineered stone which can contain more than 10% silica. More employees of this company were sidelined and forced to also take silica. Twelve additional stone countertop workers have also been diagnosed with silicosis in Colorado, Texas, and Washington.

Read an CADEODC article about the outbreak.

Safety Resources

To help prevent silica exposure in countertop fabrication work, the Occupational Health Branch has developed the following educational materials:

- Hazard Warning for Workers (PDF) - Spanish - Text sheet
- Hazard Warning for Employers (PDF) - Text sheet
- Silicosis Outbreak in Engineered Stone Fabrication Workers-10 Cases (46 States) (PDF) - Occupational Health Alert
- Recorded Webinar - CDC National Occupational Research Agenda for Respiratory Health

If your company needs help measuring silica exposure or complying with the California standards:

- Contact your workers’ compensation insurance company.
- Call 1-866-CONOSILIC0 (1-866-266-7452) for a free, confidential visit.
- Find an industrial hygienist through a searchable list of consultants provided by the American Industrial Hygiene Association.

https://www.cdph.ca.gov/Programs/CCDPHP/DEODC/OHB/Pages/SilicaStoneFabricators.aspx
Confusing Chemicals
Glyphosate

- Most widely used herbicide in the United States and worldwide
- Applied as a formulation (or mixture) with other substances that help plants to absorb glyphosate
- Prevents susceptible plants from making proteins that are needed for growth
- Use of glyphosate has risen dramatically due to development of glyphosate-resistant genetically modified crops
- Most people are exposed to residual amounts of glyphosate by ingestion of food or water

NTP 2019
Glyphosate, glyphosate based formulations and Cancer Assessments

<table>
<thead>
<tr>
<th>Agency</th>
<th>Date</th>
<th>Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Environmental Protection Agency</td>
<td>December 12, 2017</td>
<td>Not likely to be carcinogenic to humans</td>
</tr>
<tr>
<td>California’s Office of Environmental Health Hazard Assessment</td>
<td>July 7, 2017</td>
<td>Known to the State of California to Cause Cancer</td>
</tr>
<tr>
<td>Joint Food and Agricultural Organization of the United Nations/World Health Organization Meeting on Pesticide Residues</td>
<td>May 2016</td>
<td>Glyphosate is unlikely to pose a carcinogenic risk to humans from exposure in the diet</td>
</tr>
<tr>
<td>European Food Safety Authority</td>
<td>November 2015</td>
<td>Unlikely to pose a carcinogenic risk for humans</td>
</tr>
</tbody>
</table>
| International Agency for Research on Cancer | March 2015 | Probably carcinogenic to humans
 - Limited evidence in humans
 - Sufficient in animals |
| National Toxicology Program | 1992 | No genotoxicity and few systemic effects |
Proposition 65

- Officially known as the Safe Drinking Water and Toxic Enforcement Act of 1986
- Protects the state's drinking water sources from being contaminated with chemicals known to cause cancer, birth defects or other reproductive harm
- Requires businesses to inform Californians about exposures to such chemicals.
- Requires California to publish a list of such chemicals.

https://oehha.ca.gov/proposition-65
Proposition 65

- Health and Safety code 25249.8(a). Section 6382(b)(1) “a chemical shall be included on the [Proposition 65] list if it is classified by [IARC]...as (2) probably carcinogenic to humans (Group 2A) with sufficient evidence of carcinogenicity in experimental animals...” 27 Cal. Code Regs 25904(b).

- OEHHA decision on glyphosate is based on Labor Code mechanism
National Toxicology Program Research Plan

- Evaluate whether glyphosate is genotoxic (causes DNA damage)
- Evaluate whether glyphosate induces oxidative damage
- Compare the effects of glyphosate on measures of genotoxicity, oxidative stress, and cell viability to the effects of glyphosate-based formulations
- Identify data gaps on the effects of glyphosate and glyphosate-based formulations on human health outcomes other than cancer.
NIOSH Evaluation of Occupational Glyphosate Exposures

- We evaluated employee exposures when they mixed and applied herbicides in a national park.
- We saw evidence of herbicide contamination on employees’ boots, clothing, and in work areas.
- Environmental conditions approached limits for heat stress.
- Some employees reported symptoms that are consistent with early heat illness.
- Some employees reported musculoskeletal symptoms.
- We recommended improvements in training and developing written site-specific policies and procedures for herbicide handling.

NIOSH 2017
Questions About PFAS

- What is PFAS?
- How might I get exposed to PFAS?
- Can exposure affect my health?
- How do I know if I am being exposed?
- What can I do to protect myself?
- Is NIOSH doing any research on PFAS?
Per- and Polyfluoroalkyl Substances (PFAS)

- A group of over 3,000 man-made chemicals\(^1\)
- Used in many different industry and consumer products, including stain-resistant textiles, food-handling materials, firefighting foam, medical devices, personal care products, construction materials, and industrial processing aids.

1. ITRC 2017
2. ATSDR 2017
Exposure Routes and Pathways

Community Exposure

- **Ingestion** of PFAS in water
- **Ingestion** of PFAS in food
- **Inhalation** of air near large PFAS facilities

Occupational Exposure

- **Inadvertent ingestion** of PFAS in dust from hand-to-mouth contact
- **Inhalation** of PFAS in worksite air
- **Dermal absorption** from PFAS-material handling
Comparison of PFOA in Serum, Plasma, or Whole Blood by Population, Geographic Region, and Year of Most Recent Test

-Comparison based on median and range-

*Upper limit based on 95th percentile

(a) Kato et al., 2018; (b) Ericson et al., 2007; (c) CDC, 2019; (d) Karrman et al., 2006b; (e) Laitinen et al., 2014; (f) Dobraca et al., 2015; (g) Rotander et al., 2015; (h) Tao et al., 2008; (i) Shaw et al., 2013; (j) Karrman et al., 2006a; (k) Steenland et al., 2009; (l) Freberg et al., 2010; (m) Nilsson et al., 2010; (n) Woskie et al., 2012; (o) Wang et al., 2012; (p) Olsen et al., 2007; (q) Fu et al., 2016; (r) Costa et al., 2009
Epidemiology Studies Linking PFAS and Health Effects

<table>
<thead>
<tr>
<th>Target</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatic</td>
<td>Increases in total cholesterol and LDL cholesterol</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>Pregnancy induced hypertension and preeclampsia</td>
</tr>
<tr>
<td>Endocrine</td>
<td>Increased risk of thyroid disease</td>
</tr>
<tr>
<td>Immune</td>
<td>Increased risk of asthma</td>
</tr>
<tr>
<td>Reproductive</td>
<td>Decreased fertility</td>
</tr>
<tr>
<td>Developmental</td>
<td>Decreased birth weight</td>
</tr>
</tbody>
</table>

ATSDR 2018
PFOA, PFOS and Proposition 65

- Effective November 10, 2017, the Office of Environmental Health Hazard Assessment (OEHHA) added perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) to the list of chemicals known to the state to cause reproductive toxicity (developmental endpoint) for purposes of Proposition 65.¹

- The listing of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) is based on formal identification by the US Environmental Protection Agency (US EPA), an authoritative body, that the chemicals cause reproductive toxicity.²

2. See Health and Safety Code section 25249.8(b) and Title 27, Cal. Code of Regs., section 25306.
PFOA and PFOS Cancer Assessments

<table>
<thead>
<tr>
<th>Agency</th>
<th>Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA(^2)</td>
<td>There is “suggestive evidence of carcinogenic potential” for PFOA and PFOS.</td>
</tr>
<tr>
<td>IARC</td>
<td>Perfluorooctanoic acid (PFOA) is possibly carcinogenic to humans (Group 2B). A positive association was observed for cancers of the testis and kidney.</td>
</tr>
</tbody>
</table>

1. EPA. 2016d
2. EPA. 2016e
3. IARC 2016
Occupational Exposures

- Occur throughout the life of a compound or product
- Often include industry, occupation, and task-specific differences
NIOSH/NTP Study Overview

- 3-year study starting in FY20
- Project Leader: Miriam Calkins, PhD, MS

Objectives
- Identify industries and occupations where PFAS compounds are likely present
- Identify PFAS compounds currently in use
- Develop air monitoring methods for use in occupational settings
- Conduct a targeted occupational exposure assessment focusing on current exposures
- Evaluate a limited set of health indicators in study participants
High volume/exposure potential
Primary, secondary, or combined PFAS manufacturing industries.

Moderate volume/exposure potential
Industries where PFAS-product use involves transformation, aerosolization, raw compounds, or contact with the compound in/as a waste product

Low volume/exposure potential
Industries where PFAS-product use does not involve transformation, aerosolization, or raw compounds
Study Aims

1. Characterize the presence of PFAS compounds across U.S. industries through review of literature, regulatory documents, and direct communications with industry and worker representatives.

2. Develop and validate air monitoring methods appropriate for occupational environments.

3. Assess exposure to PFAS in a sample of occupational environments and worker populations from 3-4 high- and moderate-volume PFAS industries.

4. Evaluate the association between PFAS exposure and select health indicators.
Study Design

- Enroll workers from industries with ongoing exposure
 - Targeting high to moderate PFAS-using work environments
 - Anticipated industries include: manufacturing and services

- Exposure assessment
 - Biological samples
 - Full-shift breathing zone air samples
 - Observation of job task and personal protective equipment used

- Health Assessment
 - Survey questions
 - Anticipated health indicators
 - Lipids
 - Thyroid
 - CBC
 - CMP
 - Hormones
 - Immune markers
Other PFAS Exposure Research: Firefighters

NIOSH Collaborations with U Arizona and U Miami

- Structural and Aircraft Rescue Firefighting (ARFF) Firefighters
 - Assessment of acute exposure from AFFF, turnout gear, and structural fire response
 - Assessment of chronic exposure and epigenetic effects in aircraft rescue and firefighting (ARFF) firefighters
 - In vitro assessment of acute toxicity of PFAS identified in AFFF, turnout gear, and biological samples

- Wildland-urban interface (WUI) firefighters
 - Assessment of biomarkers of exposure and effect among firefighters in urban areas that are also increasingly experiencing wildland fires
Occupational Exposure Banding
Chemicals are one of the most significant occupational hazards

- 52.1 Million workers estimated exposed to chemicals in their work\(^1\)
- From 2011-2015
 - 71,140 illnesses or injuries associated with chemical exposures\(^2\)
 - 4,836 chemical-related fatalities\(^3\)
- Difficult to estimate number of chronic diseases: cancer, pulmonary, cardiovascular, neurologic related to chemicals
 - 2–8% of cancers attributed to occupational exposures\(^4\)
 - Severe underestimation has been identified

\(^1\)Calvert et al 2013
\(^2\)BLS 2011-2015
\(^3\)BLS 2011-2015
\(^4\)Purdue et al 2015
Few chemicals have occupational exposure limits (OELs)
NIOSH Occupational Exposure Banding Process for Chemical Risk Management

- Process intended to quickly and accurately assign chemicals into specific categories (bands)
- Bands are assigned based on a chemical’s toxicological potency and the adverse health effects associated with exposure to the chemical
- Utilizes available, but often limited, toxicological data to determine a potential range of chemical exposure levels that can be used as targets for exposure controls to reduce risk among workers
Occupational Exposure Banding

Document Objective
To create a consistent and documented process to characterize chemical hazards so timely and well-informed risk management decisions can be made for chemicals lacking OELs.

NIOSH 2019
What is Occupational Exposure Banding?

A mechanism to quickly and accurately assign chemicals into “categories” or “bands” based on their health outcomes and potency considerations.

A B C D E

Higher Concentrations

Lower Concentrations
Proposed NIOSH Occupational Exposure Bands

<table>
<thead>
<tr>
<th>Occupational Exposure Band</th>
<th>Airborne Target Range for Particulate Concentration (mg/m(^3))</th>
<th>Airborne Target Range for Gas or Vapor Concentration (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>>10 mg/m(^3)</td>
<td>>100 ppm</td>
</tr>
<tr>
<td>B</td>
<td>>1 to 10 mg/m(^3)</td>
<td>>10 to 100 ppm</td>
</tr>
<tr>
<td>C</td>
<td>>0.1 to 1 mg/m(^3)</td>
<td>>1 to 10 ppm</td>
</tr>
<tr>
<td>D</td>
<td>>0.01 to 0.1 mg/m(^3)</td>
<td>>0.1 to 1 ppm</td>
</tr>
<tr>
<td>E</td>
<td>≤0.01 mg/m(^3)</td>
<td>≤0.1 ppm</td>
</tr>
</tbody>
</table>
IMPORTANT POINT

An OEB is not meant to replace an OEL, rather it serves as a starting point to inform risk management decisions.
NIOSH Occupational Exposure Banding e-Tool

- Allows users to apply toxicology and potency information to generate quantitative exposure guidance for chemicals
- Used with the Occupational Exposure Banding Technical Report

https://wwwn.cdc.gov/Niosh-oeb/
Disease Detective Case Study 2
Disease Detective – Case Study 2

- An employer manufactures fiberglass products for building boats
- An employer asks you to review an audiometry report for a population of employees.
- You note a trend of high frequency hearing loss in both ears among a group of employees
 - High frequency - 3, 4, and 6 Hz
 - Hearing loss – ≥ 25 dB threshold
What would you like to know about the hearing conservation program?

- Is there a hearing conservation program?
- What are the components of the program?
 - monitoring,
 - audiometric testing,
 - hearing protectors,
 - training, and
 - recordkeeping requirements
Hearing Conservation Program Information

<table>
<thead>
<tr>
<th>Component</th>
<th>History</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring</td>
<td>Some areas of the facility show exposure to noise at or above 85 decibels (dB) averaged over 8 working hours.</td>
</tr>
<tr>
<td>Audiometry</td>
<td>Trend of bilateral high frequency hearing loss among a group of employees</td>
</tr>
<tr>
<td>Protectors</td>
<td>Employer provides hearing protectors to all workers exposed to 8-hour TWA noise levels of 85 dB or above.</td>
</tr>
<tr>
<td>Training</td>
<td>Employees receive annual training</td>
</tr>
<tr>
<td>Recordkeeping</td>
<td>Employer maintains 2 years of monitoring and audiometry for employees for the duration of employment</td>
</tr>
</tbody>
</table>
Additional review of the audiometry report

- Many employees with hearing loss worked in areas with exposure >85 dB
- For employees with exposure >85dB, there is one group with a higher level of hearing loss
- Some employees with hearing loss did not work in areas with exposure >85 dB
How do you explain the audiometry results?

- Medical cause
- Inaccurate monitoring
- Inconsistent use of hearing protection
- Additional hazard
Classification of Ototoxicants

<table>
<thead>
<tr>
<th>Site</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurotoxicant</td>
<td>Damage nerve fibers affecting hearing and balance</td>
</tr>
<tr>
<td>Cochleotoxicant</td>
<td>Damage cochlear hair cells affecting hearing</td>
</tr>
<tr>
<td>Vestibulotoxicant</td>
<td>Damage vestibular hair cells affecting balance</td>
</tr>
</tbody>
</table>
Workers exposed to Low Levels of Styrene and Noise

Morata et al., 2002
Chemicals and substances causing ototoxicity

<table>
<thead>
<tr>
<th>Substance Class</th>
<th>Chemicals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmaceuticals</td>
<td>• Aminoglycosidic antibiotics (e.g. streptomycin, gentamycin) and some other antibiotics (e.g. tetracyclines), ◦ Loop diuretics* (e.g. furosemide, ethacrynic acid) ◦ Certain analgesics* and antipyretics* (salicylates, quinine, chloroquine) ◦ Certain antineoplastic agents (e.g. cisplatin, carboplatin, bleomycin).</td>
</tr>
<tr>
<td>Solvents</td>
<td>Carbon disulfide, n-hexane, toluene, p-xylene, ethylbenzene, n-propylbenzene, styrene and methylstyrene, trichloroethylene.</td>
</tr>
<tr>
<td>Asphyxiants</td>
<td>Carbon monoxide, hydrogen cyanide and its salts, tobacco smoke</td>
</tr>
<tr>
<td>Nitriles</td>
<td>3-Butenenitrile, cis2-pentenenitrile, acrylonitrile, ciscrotononitrile, 3,3'-iminodipropionitrile.</td>
</tr>
<tr>
<td>Metals and Compounds</td>
<td>Mercury compounds, germanium dioxide, organic tin compounds, lead. Combined exposure: health effects below the noise PEL</td>
</tr>
</tbody>
</table>
Controlling exposure to ototoxicants

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elimination</td>
<td>Eliminate the hazardous chemical</td>
</tr>
<tr>
<td>Substitution</td>
<td>Replace hazardous chemical</td>
</tr>
<tr>
<td>Engineering</td>
<td>Isolation and enclosures</td>
</tr>
<tr>
<td></td>
<td>Ventilation</td>
</tr>
<tr>
<td>Administrative</td>
<td>Eliminate unnecessary tasks that cause exposure</td>
</tr>
<tr>
<td>PPE</td>
<td>PPE, Respiratory protection and hand protection</td>
</tr>
</tbody>
</table>

OSHA 2018

- To be published in early 2020
- Chapter Highlights
 - Brief High-Level Sounds
 - Ototoxicity and Otoprotection
 - Field Fit-Testing
References
References

About NIOSH and its Partnerships

Disease Detective – Case Study 1

References

Confusing Chemicals - Glyphosate

Confusing Chemicals - PFAS

References

Occupational Exposure Banding

Disease Detective – Case Study 2
Thank you to all of our partners

John Piacentino, MD, MPH
Associate Director for Science
National Institute for Occupational Safety and Health
jpiacentino@cdc.gov

For more information, contact CDC
1-800-CDC-INFO (232-4636)

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.